Engineering Novel Self-Assembling Peptide Materials via Simulations of Diphenylalanine

Carolyn Mills
Joohyun Jeon
Scott Carmichael
Professor M. Scott Shell
Professor Patrick Daugherty
Engineering New Nanoscale Materials From Peptides

- Self-assembling peptide materials
 - Form variety of nanostructures
 - Cheap, easy to make
 - Environmentally benign
 - Easily manipulated using known biochemistry

- Diphenylalanine nanotubes
 - Stable
 - Strong
 - Unique properties

Reches and Gazit. Science. 2003
Applications of Diphenylalanine Nanotubes

• Grow discrete Ag nanowires

Reches and Gazit. Science. 2003

• Increase electrode surface area and performance in supercapacitors

Simulating Self-Assembly at a Molecular Level

- Driving forces for self-assembly
- Reasons for stability
- Mechanism/pathway of self-assembly
All-Atom Simulations

- Explicitly represent every atom and their physical interactions
- Limited to small-scale systems
Analyzing Crystal Structure Stability

- Contact map
 - Counts number of times atoms are close to each other in simulation
 - Measures relative strength of interactions
Twelve Free Peptides in a Box of Water

- Stronger electrostatics
- Second ring interactions still prevalent
Similarities with Crystal Structure Increase with Concentration
Results and Conclusions

• Crystal structure stabilized principally by aromatic and hydrophobic interactions

• Early self-assembly driven by amphiphilicity

• Similarities with crystal structure increase with concentration
Future Work

• Simulate larger systems

• Simulate vacuum conditions

• Identify novel variants of diphenylalanine with increased stability for experimental testing

Acknowledgements

The Arnold and Mabel Beckman Foundation - Beckman Scholars Program

Professor M. Scott Shell
Professor Patrick Daugherty
Joo-Hyun Jeon
Scott Carmichael
Arica Lubin

UCSB